Rubisco: its role in photorespiration

Author:

Abstract

The release of CO 2 during photosynthesis that is due to the production and metabolism of glycollic acid is usually regarded as outward evidence for the wasteful process of photorespiration in plants. In the light, glycollic acid is produced almost entirely as a result of the oxygenase activity of ribulose bisphosphate carboxylaseoxygenase (Rubisco). Metabolism of the glycollic acid not only releases recently assimilated carbon back into the atmosphere but also uses a considerable amount of energy to recycle remaining carbon from the glycollate to intermediates of the photosynthetic carbon reduction cycle. Furthermore, nitrogen from amino acids is released as ammonia during the metabolism of glycollate; some further energy is needed for this ammonia to be reassimilated. The oxygenation of ribulose bisphosphate is competitive with carboxylation and it appears to be the relative concentrations of oxygen and carbon dioxide present in cells containing the enzyme that mainly determine the relative rates of the two reactions in leaves. Systems which concentrate carbon dioxide in photosynthetic cells decrease the extent of photorespiration in C 4 species, certain algae and cyanobacteria. However, carboxylases from different species also vary considerably in their relative capacities to catalyse carboxylation and oxygenation of ribulose bisphosphate under standard conditions. This variation allows some hope that photorespiration might be decreased without recourse to energydependent systems for increasing cellular CO 2 concentrations.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3