Allometry of bat wings and legs and comparison with birds wings

Author:

Abstract

Allometric equations on wing dimensions versus body mass are given for eight species of megabats and 76 species of microbats, on forearm length versus mass for 14 species of mega bats and 90 species of microbats, and on lower leg length versus mass for 11 species of megabats and 45 species of microbats. Megabats have, on average, shorter wing span, small wing area, higher wing loading and lower aspect ratio than have frugivorous microbats and the insectivorous vespertilionids of similar mass. Vespertilionids have the longest span, largest wing area and lowest wing loading in relation to body mass of the bat groups for which regression lines were calculated (megabats, frugivorous microbats, vespertilionids, molossids), characteristics that are important for slow flight and manoeuvrability for insect capture. Molossids have the highest wing loading of the groups. There is a weak tendency towards higher aspect ratio for larger bats than for smaller ones (positive slope). The slopes for most characters fit geometric similarity or have confidence intervals including the value for geometric similarity. Only in three cases does the slope lie nearer that for elastic similarity: for the forearm in nycterids and emballonurids and the lower leg length in molossids. Also in these cases the confidence intervals are wide and include the value for elastic similarity and that for geometric similarity as well. In megabats the slope for the lower leg length is much steeper than for geometric similarity. The slope for the forearm length is rather similar to that for wing span in the various groups. Megabats and frugivorous microbats have rather similar slopes for all the characters measured, but differ from the other groups only in wing area, wing loading and aspect ratio. The two frugivorous bat groups also have about the same elevation of the regression lines for aspect ratio and forearm length. Megabats and frugivorous microbats thus show a close convergence in wing area, wing loading, aspect ratio and forearm length. The regression equations provide ‘norms’ for the respective bat groups. Those species that deviate 10% or more from the mean trends for wing measurements are divided into different groups, based on the wing’s aspect ratio and loading. Bats with low aspect ratio wings usually have large pinnae, which improve the ability to discover small objects such as insects on leaves. Families or species of bats with wings of low aspect ratio are, for instance, Megadermatidae, Nycteridae, Rhinolophus ferrumequinum (Rhinolophidae), Chrotopterus auritus (Phyllostomidae) and Plecotus (Vespertilionidae). The group with average aspect ratio wings contains bats with different kinds of flight style and foraging behaviour, for instance many pteropodids, phyllostomids and vespertilionids. Bats with high aspect ratio wings are, for instance, Molossidae, Rhynchonycteris naso (Emballonuridae) and Nyctalus leisleri (Vespertilionidae). The regression lines for wing span, area and loading in megabats lie almost in the region of the lines for Greenewalt’s (1975) passeriform group, whereas the span and area for vespertilionid bats are larger and the wing loading much smaller than for most birds of similar mass. Molossid bats have a larger relative wing span and aspect ratio than have most birds, and a wing area and loading similar to those of small birds of the passeriform group. Vespertilionid bats have about the same aspect ratio as birds of the passeriform group, whereas megabats have somewhat lower ratios. Molossid bats show strong convergence with swifts and swallows in foraging behaviour and in wing form. Similar convergences can be found between various vespertilionid bats, flycatchers and swallows.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3