The musculature of Peripatus and its innervation

Author:

Abstract

The musculature of the Onychophoran Peripatus dominicae , its ultrastructure and details of innervation are described. Significant differences were noted between its gross anatomy and that reported in previous accounts, notably in the presence of inner circular body wall muscle and a prominent, functionally significant, levator of the leg. The former is important in regard to the evolutionary position of the Onychophora while the latter helps us to understand the control of walking in a lobopodial leg, and therefore the evolution of arthropod locomotion, which was the focus of our interest. Individual muscle fibres are either directly or indirectly attached to the body wall by collagen. There is a small degree of branching of fibres, with or without anastomosis, near their insertions, but most are as long as the muscle of which they are part, and are unbranched except for an occasional thin arm, emerging at an angle, that becomes invaded by collagen fibres and inserts in the skin. Diameters of muscle fibres vary from 1 to 45 pm. They are invaginated by two separate systems of unique wide (0.3 pm) tubules, longitudinal and radial. These are lined with similar material to that forming the basement material of the sarcolemma, and also contain fine strands with collagen-type cross-banding that connect to collagen bundles outside the fibres. In addition there are narrow tubules of ordinary T-tubule diameter. Both wide and narrow tubules make contacts with sarcoplasmic reticulum cysternae. Dense Z bodies are attached to both kinds of wide tubule, to the inside of the sarcolemma, and are scattered, without any obvious array, in the sarcoplasm. Thin myofilaments emerge from the Z bodies parallel to the fibre axis. Thick filaments occur in clusters with a loosely hexagonal array, but without any regular relation to thin ones: relatively few orbits of thin around thick filaments were seen in many muscle fibres regardless of fibre length and conditions during fixation. A unique innervation pattern was found, consisting of a combination of muscle arm to nerve contacts, which appear to be the commonest, and nerve on muscle fibre synapses. At least 13 motor axons were found to supply each small muscle or cluster of muscle fibres in a large muscle. Each muscle arm simultaneously makes synaptic contact with 3 to 7 axons. Nerve on muscle junctions contain from 1 to 8 axons, each making synaptic contacts. The details of the postsynaptic endplate-specializations resemble those seen in mammalian endplates and are markedly different from both arthropod and annelidan neuromuscular synapses.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference44 articles.

1. Anderson D . T . 1973 Embryology and phylogeny o f annelids and arthropods Pergamon Oxford.

2. Atwood H . L. 1972 Crustacean muscle. In The Structure andfunction o f muscle vol. 1 2nd edn. (ed. G. H . Bourne) pp. 422-489. N ew York London: Academ ic Press.

3. Beklemishev W . N . 1969 Principles o f comparative anatomy o f invertebrates. V ol. 1. Promorphology. University o f Chicago Press.

4. Electrophysiology o f the somatic muscle cells o f Ascaris Iumbricoides. J . cell. comp;de Bell J .;Physiol.,1963

5. T he anatom y o f the body wall o f Onychophora;Birkett-Smith S. J .;Zool. Jb. Anat.,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3