Conservation and divergence in multigene families: alternatives to selection and drift

Author:

Abstract

It is generally assumed that conservation and divergence of DNA signify function (selection) and no function (drift), respectively. This assumption is based on the view that a mutation is a unique event on a single chromosome, the fate of which depends on selection or drift. Knowledge of the rates, units and biases of widespread mechanisms of non-reciprocal DNA exchange, in particular within multigene families, provides alternative explanations for conservation and divergence, notwithstanding biological function. Such mechanisms of DNA turnover cause continual fluctuations in the copy-number of variant genes in an individual and, hence, promote the gradual and cohesive spread of a variant gene throughout a family (homogenization) and throughout a population (fixation). The dual processes (molecular drive) of homogenization and fixation are inextricably linked. Data are presented of the expected stages of transition in the spread of variant repeats by molecular drive in some non-genic families of DNA, seemingly not under the influence of selection. When a molecularly driven change in a given gene family is accompanied by the coevolution (mediated by selection) of other DNA, RNA or protein molecules that interact with the gene family then biological function is observed to be maintained despite sequence divergence. Conversely, the mechanics of DNA turnover and a turnover bias in favour of ancestral sequences can dramatically retard the rate of sequence change, in the absence of function. Examples of the maintenance of function by molecular coevolution and conservation of sequences in the absence of function, are drawn mainly from the rDNA multigene family.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference53 articles.

1. Arnheim N. 1983 Concerted evolution of multigene families. In Evolution of genes and proteins (ed. M. Nei & R. K. Koehn) pp. 38-61. Sunderland: Sinauer Ass. Inc.

2. Gene conversion: Some implications for immunoglobulin genes

3. The distribution of satellite and main-band DNA components in the melanogaster species subgroup of Drosophila

4. Evolution of the P-globin gene cluster in man and primates. J . molec;Barrie P. A.;Biol.,1981

5. Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species of Drosophila

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3