Flight performance and visual control of flight of the free-flying housefly ( Musca domestica L.) II. Pursuit of targets

Author:

Abstract

The pursuit behaviour of houseflies has been analysed by the evaluation of movie films. On the floor, males, but not females, turn towards passing targets. Males as well as females pursue targets in the air. Male chasing seems to be functionally different from female tracking. Males attack targets in the air from below. They sometimes retract from the target fly after an approach. Thus, a chase may be divided into attacks, periods of pursuit and retreats. Males catch females, but not other males. The pursuer is therefore able to discriminate between the sexes. Close approach or contact with the target fly seems to be necessary to obtain the information. During pursuit both sexes increase the rate of turning. The male but not the female target fly performs evasive translatory reactions to the attacks (figure 4). Females do not catch other flies. They often react with a single turn in the direction of a passing object. They seldom follow the target, which is then normally positioned below the tracking fly. The rotations about the vertical and transverse axis (yaw and pitch) are visually controlled in both sexes. The horizontal and vertical error angle, as well as the horizontal and vertical retinal target velocity, influence the turning behaviour. At least in males, further, hitherto unknown, cues seem to be additionally involved in the control of the rotatory movements. The male control systems operate more precisely than those of the females. Rotations are characterized by steplike changes in angular orientation (‘ turns’) at high angular velocity. Smooth rotations at angular velocities less than about 200 deg s -1 seem not to play any role either in males or in females. ‘Sideways’ tracking, most probably mediated by rolling about the long axis, occurred in a single sequence only. A correlation between the translation velocity and the distance between pursuer and target is observed in the pursuit sequences of both sexes. This correlation is interpreted as a by-product of the organization of the flight motor. Therefore, neither males nor females control the translation velocity by the distance to the target. The discussion concentrates on the problems in characterizing the control systems and a comparison with data from optical and electrophysiological measurements. The behavioural differences between hoverflies and houseflies are attributed to the different flight motors.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference36 articles.

1. Retinal lattice, visual field and binocularities in flies. J. comp;Beersma D. G. M.;Physiol.,1977

2. Patterns of projection in the visual system of the fly. I. Retina-lamina projections

3. Buchner E. 1984 Behavioural analysis of spatial vision in insects. In Photoreception and vision in invertebrates (ed. M. A. Ali) pp. 561-621. New York and London: Plenum Press.

4. a Some operating rules for the optomotor system of a hoverfly during voluntary flight. J. comp;Collett T. S.;Physiol.,1980

5. ^ Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly. J. comp;Collett T. S.;Physiol.,1980

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3