Exocytosis and membrane recycling

Author:

Abstract

Exocytosis implies the fusion of the membrane of secretion granules with, and the insertion into, the plasmalemma. In non-growing systems such an insertion is temporary in that the inserted membrane is eventually removed. Turnover results indicate that the removed membrane is not destroyed but recycled within the cell and reused. In some systems exocytosis occurs over the entire plasmalemma, while in others it is restricted to discrete regions, characterized by peculiar morphology and composition. Thus the fusion of the two membranes is probably preceded by a recognition step. Structural specializations were detected in interacting granule and plasma membranes by freeze-fracture and surface labelling techniques: arrays of intramembrane particles in protozoans and nerve terminals; clearing of particles and surface antigens in other systems. Direct evidence, obtained in some secretory systems, indicates that after exocytosis the granules and plasma membranes do not intermix, but remain segregated. The subsequent recapture of membrane patches of the granule type (in many systems by means of coated pits and vesicles) could then account for the striking specificity of the recycling process, documented by both composition and structural studies. In different systems the recycling of granule membranes is carried out at greatly different rates. Recent results in the parotid gland and neuromuscular junction indicate that this process is Ca 2+ -dependent.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3