A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia

Author:

Abstract

The organization of the thoracic and suboesophageal ganglia in the locust is presented to provide a framework into which details of individual neurons can be inserted as information becomes available. Three species were examined, Chortoicetes terminifera (Walker), Schistocerca gregaria (Forskål) and Locusta migratoria migratorioides (Reiche and Fairmaire). The basic plan of the ganglia is similar in all three species. Series of selected sections in transverse, horizontal and sagittal planes are illustrated to show the arrangement of the main nerve fibre tracts and areas of neuropil, and these are described briefly. A guide is given to prominent features that assist in the interpretation of sections in each plane. In the simpler mesothoracic and prothoracic ganglia nine longitudinal tracts are present in each half of the neuromere, and six dorsal and four ventral transverse tracts (commissures) link the two halves. Four vertical or oblique tracts are conspicuous, the T-tract, ring tract, C-tract and I-tract. Major roots of each peripheral nerve useful as landmarks are numbered from anterior to posterior. Two regions of fine fibrous neuropil are prominent, the ventral association centre and an area associated with the ring tract, a little above it. In the metathoracic ganglion three abdominal neuromeres are fused posteriorly to the true metathoracic neuromere. All four neuromeres show modification of the basic framework chiefly in the arrangement of the ventral commissures and the degree of development of the ventral association centre. In the suboesophageal ganglion three neuromeres, mandibular, maxillary and labial, are fused together from anterior to posterior. They show increasing modification of the basic plan anteriorly. Additional anterior longitudinal tracts are present, which connect with the brain, the dorsal commissures are much reduced and compressed, particularly in the mandibular neuromere, and the ventral commissures of all three neuromeres differ considerably from those of the thoracic ganglia.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference80 articles.

1. Suboesophageal neurons involved in head movements and feeding in locusts

2. Altman J. S. & Tyrer N. M. 1974 Insect flight as a system for the study of the development of neuronal connections. In Experimental analysis of insect behaviour (ed. L. Barton Browne) pp. 159-179. Berlin: Springer-Verlag.

3. The locust wing hinge stretch receptors. I. Primary sensory neurons with enormous central arborizations. J.comp;Altman J. S.;Neurol.,1977

4. ^ The locust wing hinge stretch receptors. II. Variation, alternative pathways and `mistakes' in the central arborizations. J. comp;Altman J. S.;Neurol.,1977

5. Origin, destination and mapping of tritocerebral neurons of locust

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3