Levels, distribution and chemical forms of trace elements in food plants

Author:

Abstract

The content of trace elements in plants can vary widely, depending upon the composition of the soil in which they grow, other environmental factors, and the species or cultivar of the plant. A high growth rate of the plant may cause internal ‘dilution’ of trace elements. Complex formation with soil organic colloids and compounds, cell wall material and ligands in and inside the cell membranes are of critical importance in uptake, though most evidence shows that it is the free metal ion in the external solution that is absorbed; the detailed mechanisms are still unknown. Other processes such as excretion of organic compounds, reductants and hydrogen ions from the root greatly alter availability of trace metals, and iron has to be reduced to the ferrous form before uptake. The mean composition of plant shoots is affected by age and season; element mobility in the xylem and phloem determines translocation, and hence concentrations in individual parts of the plant. The rate of retranslocation can be strongly affected by the abundance of the element. Symptoms of deficiency or excess are well documented, but are often not dependable. The essentiality of the trace metals depends upon their function as part of enzymes, and these are briefly reviewed, with stress on processes in plants. Only a small fraction of the total amount of an element is bound in the enzyme; of the remainder, some is present as the free metal ion (Mn) or as complexes of small molecular mass (Cu, Zn, Ni, Fe), the rest being bound to cell wall material. Certain species or genotypes have resistance against high levels of some elements in the soil. Several mechanisms may be involved, one being very strong binding to root cell walls. There are also large genetic differences in susceptibility to trace element deficiencies.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3