The genetic basis of plant form

Author:

Abstract

Plant architecture is relevant to a number of questions in population biology because it affects the number, size, and fecundity of individuals. Architectural differences in wild plants have frequently been described and are presumed to have a genetic basis because the differences are maintained when the plants are grown in uniform gardens, but little genetic research has been done. Studies in crop plants, however, provide substantial information about how plant form can be genetically manipulated. They show that the architecture of many crops has been successfully modified by making a small number of genetic substitutions that affect shoot length, flowering node, branch presence and orientation, habit, and growth determinacy. The changes occur at the level of metamers (leaf-axillary bud-internode) and become multiplied by iteration into the characteristic architecture of the plant. Metamer growth and iteration are tightly coordinated by genetic factors that operate at the level of the whole plant. Evidence supporting this hypothesis includes single gene control of coordinated changes among successive internodes, genetic control of production of metabolites or signals that move from mature tissues to shoot growing points, and allometries connecting organs arising from the same meristem. Since different plant architectures are associated with differences in fitness, information on the genetic basis of the morphological and physiological characters that cause the architectural differences will elucidate how fitness characters evolve.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference49 articles.

1. Abrahamson W. G. 1980 Demography and vegetative reproduction. In Demography and evolution inplant populations (ed. O. T. Solbrig) pp. 89-106. Oxford: Blackwell Scientific Publications.

2. Antonovics J. 1984 Genetic variation within populations. In Perspectives on plant population ecology (ed. R. Dirzo & J. Sarukhan) pp. 229-241. Sunderland Massachusetts: Sinauer Associates Inc.

3. Inheritance and Significance of Dwarfism in an Indica Rice Variety

4. Two Genes Affecting Stem Termination in Soybeans 1

5. Influence of Flower Initiation and Development on Internode Growth in the Ladino Clover Stolon 1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3