Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level

Author:

Hapca Simona1,Crawford John W1,Young Iain M1

Affiliation:

1. SIMBIOS Centre, University of Abertay DundeeDundee DD1 1HG, UK

Abstract

The characterization of the dispersal of populations of non-identical individuals is relevant to most ecological and epidemiological processes. In practice, the movement is quantified by observing relatively few individuals, and averaging to estimate the rate of dispersal of the population as a whole. Here, we show that this can lead to serious errors in the predicted movement of the population if the individuals disperse at different rates. We develop a stochastic model for the diffusion of heterogeneous populations, inspired by the movement of the parasitic nematode Phasmarhabditis hermaphrodita . Direct observations of this nematode in homogeneous and heterogeneous environments reveal a large variation in individual behaviour within the population as reflected initially in the speed of the movement. Further statistical analysis shows that the movement is characterized by temporal correlations and in a heterogeneously structured environment the correlations that occur are of shorter range compared with those in a homogeneous environment. Therefore, by using the first-order correlated random walk techniques, we derive an effective diffusion coefficient for each individual, and show that there is a significant variation in this parameter among the population that follows a gamma distribution. Based on these findings, we build a new dispersal model in which we maintain the classical assumption that individual movement can be described by normal diffusion, but due to the variability in individual dispersal rates, the diffusion coefficient is not constant at the population level and follows a continuous distribution. The conclusions and methodology presented are relevant to any heterogeneous population of individuals with widely different diffusion rates.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference70 articles.

1. Nematode movement along a chemical gradient in a structurally heterogeneous environment. 2. Theory;Anderson A.R.A;Fundam. Appl. Nematol,1997

2. Applebaum D Levy processes and stochastic calculus. 2004 Cambridge UK:Cambridge University Press.

3. Scale-free dynamics in the movement patterns of jackals

4. Parameter estimation techniques for interaction and redistribution models: a predator-prey example

5. Batschelet E Circular statistics in biology. 1981 London UK:Academic Press.

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3