Chitosan-mediated crystallization and assembly of hydroxyapatite nanoparticles into hybrid nanostructured films

Author:

Kumar R1,Prakash K.H2,Cheang P2,Gower L3,Khor K.A4

Affiliation:

1. BioEngineering, Montana Tech of the University of MontanaButte, MT 59701, USA

2. Division of Bioengineering, Nanyang Technological University50 Nanyang Avenue, Singapore 639798, Republic of Singapore

3. Materials Science and Engineering, University of Florida210A Rhines Hall, Gainesville, FL 32611, USA

4. School of Mechanical and Aerospace Engineering, Nanyang Technological University50 Nanyang Avenue, Singapore 639798, Republic of Singapore

Abstract

The synthesis and subsequent assembly of nearly spherical nano-hydroxyapatite (nHA) particles in the presence of trace amounts of the polysaccharide chitosan was carried out employing a wet chemical approach. Chitosan addition during synthesis not only modulated HA crystallization but also aided in the assembly of nHA particles onto itself. Solvent extraction from these suspensions formed iridescent films, of which the bottom few layers were rich in self-assembled nHA particle arrays. The cross-section of these hybrid films revealed compositional and hence structural grading of the two phases and exhibited a unique morphology in which assembled nHA particles gradually gave way to chitosan-rich top layers. Transmission electron microscope and selected area electron diffraction studies suggested that the basal plane of HA had interacted with chitosan, and scanning electron microscope studies of the hybrid films revealed multi-length scale hierarchical architecture composed of HA and chitosan. Phase identification was carried out by X-ray diffraction (XRD) and Rietveld analysis of digitized XRD data showed that the basic apatite structure was preserved, but chitosan inclusion induced subtle changes to the HA unit cell. The refinement of crystallite shape using the Popa method clearly indicated a distinct change in the growth direction of HA crystallites from [001] to [100] with increasing chitosan concentration. The paper also discusses the likelihood of chitosan phosphorylation during synthesis, which we believe to be a pathway, by which chitosan molecules chemically interact with calcium phosphate precursor compounds and orchestrate the crystallization of nHA particles. Additionally, the paper suggests several interesting biomedical applications for graded nHA–chitosan nanostructured films.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3