The control systems structures of energy metabolism

Author:

Cloutier Mathieu1,Wellstead Peter1

Affiliation:

1. Hamilton Institute, National University of Ireland, Maynooth, Ireland

Abstract

The biochemical regulation of energy metabolism (EM) allows cells to modulate their energetic output depending on available substrates and requirements. To this end, numerous biomolecular mechanisms exist that allow the sensing of the energetic state and corresponding adjustment of enzymatic reaction rates. This regulation is known to induce dynamic systems properties such as oscillations or perfect adaptation. Although the various mechanisms of energy regulation have been studied in detail from many angles at the experimental and theoretical levels, no framework is available for the systematic analysis of EM from a control systems perspective. In this study, we have used principles well known in control to clarify the basic system features that govern EM. The major result is a subdivision of the biomolecular mechanisms of energy regulation in terms of widely used engineering control mechanisms: proportional, integral, derivative control, and structures: feedback, cascade and feed-forward control. Evidence for each mechanism and structure is demonstrated and the implications for systems properties are shown through simulations. As the equivalence between biological systems and control components presented here is generic, it is also hypothesized that our work could eventually have an applicability that is much wider than the focus of the current study.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3