Biological nano-functionalization of titanium-based biomaterial surfaces: a flexible toolbox

Author:

Beutner René1,Michael Jan2,Schwenzer Bernd2,Scharnweber Dieter1

Affiliation:

1. Max Bergmann Center of Biomaterials, TU Dresden, Budapester Strasse 27, 01069 Dresden, Germany

2. Chair of Biochemistry, Department of Chemistry, TU Dresden, Bergstr. 66, 01069 Dresden, Germany

Abstract

Surface functionalization with bioactive molecules (BAMs) on a nanometre scale is a main field in current biomaterial research. The immobilization of a vast number of substances and molecules, ranging from inorganic calcium phosphate phases up to peptides and proteins, has been investigated throughout recent decades. However, in vitro and in vivo results are heterogeneous. This may be at least partially attributed to the limits of the applied immobilization methods. Therefore, this paper highlights, in the first part, advantages and limits of the currently applied methods for the biological nano-functionalization of titanium-based biomaterial surfaces. The second part describes a new immobilization system recently developed in our groups. It uses the nanomechanical fixation of at least partially single-stranded nucleic acids (NAs) into an anodic titanium oxide layer as an immobilization principle and their hybridization ability for the functionalization of the surface with BAMs conjugated to the respective complementary NA strands.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3