Affiliation:
1. Biophysical Engineering Group, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of TwenteP.O. Box 217, 7500 AE Enschede, The Netherlands
Abstract
Multimode microscopy exploits the measurement of multiple spectroscopic parameters to yield a wealth of spatially resolved spectroscopic detail about the sample under study. Here, we describe the realization of a multimode microscope capable of wide-field transmission, reflectivity and emission imaging. The instrument also incorporates confocal spectral and lifetime imaging enabling convenient high-content imaging of complex samples, allowing the direct correlation of the data obtained from the different modes. We demonstrate the versatility of this imaging platform by reviewing applications to the modulation of fluorescent protein emission by inverse opal photonic crystals, to the detection and visualization of J-aggregate coupling of small molecule dyes intercalated into nanochannels in zeolites and to the visualization of fluorescent proteins micropatterned onto surfaces. In all cases, the combination of different microspectroscopic modes is essential for the resolution of specific photophysical details of the complex systems in question.
Subject
Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献