A geological history of reflecting optics

Author:

Parker Andrew Richard1

Affiliation:

1. Department of Zoology, University of OxfordSouth Parks Road, Oxford OX1 3PS, UK and Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK

Abstract

Optical reflectors in animals are diverse and ancient. The first image-forming eye appeared around 543 million years ago. This introduced vision as a selection pressure in the evolution of animals, and consequently the evolution of adapted optical devices. The earliest known optical reflectors—diffraction gratings—are 515 Myr old. The subsequent fossil record preserves multilayer reflectors, including liquid crystals and mirrors, ‘white’ and ‘blue’ scattering structures, antireflective surfaces and the very latest addition to optical physics—photonic crystals. The aim of this article is to reveal the diversity of reflecting optics in nature, introducing the first appearance of some reflector types as they appear in the fossil record as it stands (which includes many new records) and backdating others in geological time through evolutionary analyses. This article also reveals the commercial potential for these optical devices, in terms of lessons from their nano-level designs and the possible emulation of their engineering processes—molecular self-assembly.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Micro-Spectrometer for Resource Mapping in Extreme Environments;AIAA SCITECH 2022 Forum;2022-01-03

2. Bioinspired, Cholesteric Liquid-Crystal Reflectors with Time-Controlled Coexisting Chiral and Achiral Structures;ACS Applied Materials & Interfaces;2021-06-16

3. Contact Lens Technology: From Fundamentals to Applications;Advanced Healthcare Materials;2019-06-11

4. Optical Biomimetics;Comprehensive Nanoscience and Nanotechnology;2019

5. The Geometric Relationship Between Object and Image;Light and Video Microscopy;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3