Affiliation:
1. National Centre for Biomedical Engineering Sciences, National University of IrelandGalway, Ireland
2. School of Chemistry and Chemical Biology, University College DublinDublin 4, Ireland
Abstract
Recently, with the development of smart polymers, research has looked to using thermoresponsive polymers as cell culture substrates. These novel surfaces allow the cultivation of cells without enzymes using the thermoresponsive phase transition property of poly(
N
-isopropylacrylamide) (PNIPAAm). However, this requires expensive techniques to generate a sufficiently thin film that allows cell adhesion. In this study, we looked at simple solvent cast films which normally show poor cell adhesion, but here the films are coated with cell adhesion promoters (CAPs) to improve cell growth without altering the copolymer thermoresponsive behaviour.
A copolymer of PNIPAAm and
N
-
tert
-butylacrylamide (NtBAm) with a ratio of 85 : 15, respectively, was synthesized and solvent cast. The copolymer films were coated with CAPs, such as collagen, fibronectin and laminin, to increase their cell adhesion and growth properties. Cell activity measured by the alamarBlue assay showed similar results for coated copolymer films and standard tissue culture plastic controls. Deposition of CAPs on to the copolymer films was characterized by scanning electron microscopy and atomic force microscopy. Cell detachment from the copolymer films is not affected by the surface coatings of CAPs, and endothelial cells are recovered as an intact sheet, which has great potential for uses in tissue engineering applications. The results demonstrate a versatile method for the cultivation of cells while eliminating the need for the use of digestive enzymes such as trypsin. This study shows that cultivation on physically bonded PNIPAAm copolymers is viable and achievable by relatively simple methods.
Subject
Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献