Control of translation initiation: a model-based analysis from limited experimental data

Author:

Dimelow Richard J1,Wilkinson Stephen J1

Affiliation:

1. Manchester Interdisciplinary Biocentre, University of ManchesterManchester M1 7DN, UK

Abstract

We have built a detailed kinetic model of translation initiation in yeast and have used a novel approach to determine the flux controlling steps based on limited experimental data. An efficient parameter estimation method was adapted in order to fit the most uncertain parameters (rate constants) to in vivo measurements in yeast. However, it was found that there were many other sets of plausible parameter values that also gave a good fit of the model to the data. We therefore used random sampling of this uncertain parameter space to generate a large number of diverse fitted parameter sets. A compact characterization of these parameter sets was provided by considering flux control. In particular, we suggest that the rate of translation initiation is most strongly influenced by one of two reactions: either the guanine nucleotide exchange reaction involving initiation factors eIF2 and eIF2B or the assembly of the multifactor complex from its constituent protein/tRNA containing complexes. It is hoped that the approach presented in this paper will add to our understanding of translation initiation pathway and can be used to identify key system-level properties of other biochemical processes.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3