Iridescent structural colour production in male blue-black grassquit feather barbules: the role of keratin and melanin

Author:

Maia Rafael12,Caetano João Victor O3,Báo Sônia N3,Macedo Regina H1

Affiliation:

1. Laboratório de Comportamento Animal, Departamento de Zoologia, Universidade de BrasíliaBrasília 70910-900, Brazil

2. Programa de Pós-Graduação em Ecologia, Universidade de BrasíliaBrasília 70910-900, Brazil

3. Laboratório de Microscopia Eletrônica, Departamento de Biologia Celular, Universidade de BrasíliaBrasília 70919-970, Brazil

Abstract

Iridescent coloration plays an important role in the visual communication system of many animal taxa. It is known that iridescent structural colours result from layers of materials with different refractive indexes, which in feathers usually are keratin, melanin and air. However, the role of these materials in the production of structural iridescent coloration is still poorly documented. Despite the great interspecific variation in the organization of such structures in bird plumage, melanin layers are usually considered too opaque, suggesting its main role is to delineate the outermost keratin layer and absorb incoherently scattered stray light. We combined spectrometry, electron microscopy and thin-film optical modelling to describe the UV-reflecting iridescent colour of feather barbules of male blue-black grassquits (Volatinia jacarina), characterized by a keratin layer overlying a single melanin layer. Our models indicate that both the keratin and the melanin layers are essential for production of the observed colour, influencing the coherent scattering of light. The melanin layer in some barbules may be thin enough to allow interaction with the underlying keratin; however, individuals usually have, on an average, the minimum number of granules that optimizes absorbance by this layer. Also, we show that altering optical properties of the materials resulted in better-fitting models relative to the empirically measured spectra. These results add to previous findings concerning the influence of melanin in single-layer iridescence, and stress the importance of considering natural variation when characterizing such photonic structures.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3