Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs

Author:

Caro Colin G1,Cheshire Nick J2,Watkins Nick1

Affiliation:

1. Department of Bioengineering, Imperial CollegeLondon SW7 2AZ, UK

2. Regional Vascular Unit, St Mary's HospitalLondon W2 1NY, UK

Abstract

Intimal hyperplasia (IH), which causes occlusion of arterial bypass grafts and arteriovenous (A-V) shunts, develops preferentially in low wall shear, or stagnation, regions. Arterial geometry is commonly three-dimensional, generating swirling flows, the characteristics of which include in-plane mixing and inhibition of stagnation. Clinical arterial bypass grafts are commonly two-dimensional, favouring extremes of wall shear. We have developed small amplitude helical technology (SwirlGraft) devices and shown them to generate physiological-type swirling flows. Expanded polytetrafluorethylene (ePTFE) grafts, although widely used as A-V shunts for renal dialysis access, are prone to thrombosis and IH. In a small preliminary study in pigs, we have implanted SwirlGraft ePTFE carotid artery-to-jugular vein shunts on one side and conventional ePTFE carotid artery-to-jugular vein shunts contralaterally. There was consistently less thrombosis and IH in the SwirlGraft than conventional shunts. At eight weeks (two animals), the differences were marked, with virtually no disease in the SwirlGraft devices and occlusion of the conventional grafts by thrombosis and IH. The study had limitations, but the lesser pathology in the SwirlGraft devices is likely to have resulted from their geometry and the associated swirling flow. The results could have implications for vascular biology and prolongation of the patency of arterial bypass grafts and A-V shunts.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference16 articles.

1. Anastomotic intimal hyperplasia: Mechanical injury or flow induced

2. Atheroma and arterial wall shear - Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis

3. Non-planar curvature and branching of arteries and non-planar-type flow

4. Influence of non-planar geometry on flow separation;Caro C.G;J. Physiol,1998

5. Caro C. G. 2004 Flow in arteries and large airways. Invited Lecture Euromech 456 RWTH Aachen October 4. (available on video).

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3