Threshold parameters for a model of epidemic spread among households and workplaces

Author:

Pellis L.1,Ferguson N. M.1,Fraser C.1

Affiliation:

1. Department of Infectious Disease Epidemiology, Imperial College London, London SW7 2AZ, UK

Abstract

The basic reproduction number R 0 is one of the most important concepts in modern infectious disease epidemiology. However, for more realistic and more complex models than those assuming homogeneous mixing in the population, other threshold quantities can be defined that are sometimes more useful and easily derived in terms of model parameters. In this paper, we present a model for the spread of a permanently immunizing infection in a population socially structured into households and workplaces/schools, and we propose and discuss a new household-to-household reproduction number R H for it. We show how R H overcomes some of the limitations of a previously proposed threshold parameter, and we highlight its relationship with the effort required to control an epidemic when interventions are targeted at randomly selected households.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling Of Crime Epidemic for Sustainable Development;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

2. DECIPHERING DYNAMICS OF COVID-19 OUTBREAK IN INDIA: AN AGE-STRUCTURED MODEL;Journal of Biological Systems;2023-09-27

3. Network and Epidemic Model;Controlling Epidemics With Mathematical and Machine Learning Models;2022-10-21

4. Approximating steady state distributions for household structured epidemic models;Journal of Theoretical Biology;2022-02

5. The Multi-group Susceptible Infected Recovered Model with Stage Progression: A Epidemiological Modelling of Forecasting COVID Cases in the Philippines;Modeling, Control and Drug Development for COVID-19 Outbreak Prevention;2021-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3