Retinally-generated saccadic suppression of a locust looming-detector neuron: investigations using a robot locust

Author:

Santer Roger D.1,Stafford Richard1,Rind F. Claire1

Affiliation:

1. School of Biology, Ridley Building, University of Newcastle upon TyneNewcastle upon Tyne, Tyne and Wear NE1 7RUUK

Abstract

A fundamental task performed by many visual systems is to distinguish apparent motion caused by eye movements from real motion occurring within the environment. During saccadic eye movements, this task is achieved by inhibitory signals of central and retinal origin that suppress the output of motion-detecting neurons. To investigate the retinally-generated component of this suppression, we used a computational model of a locust looming-detecting pathway that experiences saccadic suppression. This model received input from the camera of a mobile robot that performed simple saccade-like movements, allowing the model's response to simplified real stimuli to be tested. Retinally-generated saccadic suppression resulted from two inhibitory mechanisms within the looming-detector's input architecture. One mechanism fed inhibition forward through the network, inhibiting the looming-detector's initial response to movement. The second spread inhibition laterally within the network, suppressing the looming-detector's maintained response to movement. These mechanisms prevent a loomingdetector model response to whole-field visual stimuli. In the locust, this mechanism of saccadic suppression may operate in addition to centrally-generated suppression. Because lateral inhibition is a common feature of early visual processing in many organisms, we discuss whether the mechanism of retinally-generated saccadic suppression found in the locust looming-detector model may also operate in these species.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3