Constraint-based network model of pathogen–immune system interactions

Author:

Thakar Juilee1,Saadatpour-Moghaddam Assieh2,Harvill Eric T.3,Albert Réka1

Affiliation:

1. Department of Physics, 104 Davey Laboratory, Pennsylvania State UniversityUniversity Park, PA 16802, USA

2. Department of Mathematics, 109 McAllister Building, Pennsylvania State UniversityUniversity Park, PA 16802, USA

3. Department of Veterinary and Biomedical Sciences, 115 Henning Building, Pennsylvania State UniversityUniversity Park, PA 16802, USA

Abstract

Pathogenic bacteria such as Bordetella bronchiseptica modulate host immune responses to enable their establishment and persistence; however, the immune response is generally successful in clearing these bacteria. Here, we model the dynamic outcome of the interplay between host immune components and B. bronchiseptica virulence factors. The model extends our previously published interaction network of B. bronchiseptica and includes the existing experimental information on the relative timing of IL10 and IFNγ activation in the form of qualitative inequalities. The current model improves the previous one in two directions: (i) by augmenting the network with new nodes with specific function in T helper cell differentiation and effector mechanisms and (ii) by using a dynamic approach that allows us to quantify node states and mechanisms revealed to be important from our previous model. The model makes predictions about the time scales of each process, the activity thresholds of each node and novel regulatory interactions. For example, the model predicts that the activity threshold of IL4 is higher than that of IL12 and that pro-inflammatory cytokines regulate the activity of Th2 cells. Some of these predictions are supported by the literature, and many can serve as targets of future experiments.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3