Affiliation:
1. Medical Engineering Division, Department of EngineeringMile End Road, Queen Mary, University of LondonLondon E1 4NSUK
2. Interdisciplinary Research Centre in Biomedical Materials, Mile End Road, Queen Mary, University of LondonLondon E1 4NSUK
Abstract
Tissue oxygenation is a key factor ensuring normal tissue functions and viability. Continuous real-time monitoring of the partial pressure of oxygen,
p
O
2
, in tissues gives insight into the dynamic fluctuations of O
2
supplies to tissues by blood circulation. Small oxygen sensors enable investigations of the spatial variation of
p
O
2
in tissues at different locations in relation to local microvessels. In this paper,
p
O
2
measurement using microelectrodes and biocompatible sensors is discussed and recent progress of their application in human skin is reviewed. Emphasis is given to working principles of a number of existing oxygen sensors and their potential application in vivo and in tissue engineering. Results on spatial and temporal variations of the
p
O
2
in human skin introduced by localized ischaemia-reperfusion are presented when the surface of the skin is covered by an oxygen-free paraffin oil layer and the range of the tissue
p
O
2
is deduced to be between 0 and 60 mmHg. In the study,
p
O
2
increases from 8.0±3.2 mmHg (
n
=6) at the surface of the skin to 35.2±8.0 mmHg (
n
=9) at a depth just above the subpapillary plexus. Temporal decay in
p
O
2
following tissue compression and rise in
p
O
2
following pressure release can be described using mono-exponential functions. The time constant for the exponential decay,
t
=8.44±1.53 s (
n
=7) is consistently greater than that for the exponential rises,
τ
′=4.75±0.82 s (
n
=6). The difference in
p
O
2
change with the time following tissue compression and pressure release reveals different dynamic mechanisms involved in the two transient phases. The elevated steady state
p
O
2
following reperfusion, which is approximately 20% higher than the pre-occlusion value, indicates localized reactive hyperaemia. Possible applications of O
2
microsensors in diseases, e.g. tumours, pressure ulcers, are also discussed.
Subject
Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献