Affiliation:
1. Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
Abstract
Theory has emphasized the importance of both intrinsic factors such as host immunity and extrinsic drivers such as climate in determining disease dynamics. In particular, seasonality may lead to multi-annual cycles in prevalence, but the likelihood of this depends on the role of acquired immunity. Some diseases including malaria have immunity that falls between the classic susceptible–infectious–removed and susceptible–infectious–susceptible models. Here, we investigate the general conditions promoting the subharmonic resonance behaviour that may lead to multi-annual cycles in a general malaria dynamical model. Utilizing two complementary approaches to bifurcation analyses, we show that resonance is promoted by processes shortening the length of the infectious period and that subharmonic cycles are favoured in situations with strong seasonality in transmission but at intermediate levels of endemicity. We discuss the implications of our results for understanding prevalence patterns in long-term malaria datasets from Kenya that show multi-annual cycles and one from Thailand that does not and discuss the possible implications of treatment.
Subject
Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献