Match and mismatch between dietary switches and microbial partners in plant sap-feeding insects

Author:

Bell-Roberts Louis1,Douglas Angela E.23ORCID,Werner Gijsbert D. A.14ORCID

Affiliation:

1. Department of Zoology, University of Oxford, Oxford OX1 3PS, UK

2. Department of Entomology, Cornell University, Ithaca, NY 14853, USA

3. Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA

4. Balliol College, University of Oxford, Oxford OX1 3BJ, UK

Abstract

Some animal groups associate with the same vertically transmitted microbial symbionts over extended periods of evolutionary time, punctuated by occasional symbiont switches to different microbial taxa. Here we test the oft-repeated suggestion that symbiont switches are linked with host diet changes, focusing on hemipteran insects of the suborder Auchenorrhyncha. These insects include the only animals that feed on plant xylem sap through the life cycle, as well as taxa that feed on phloem sap and plant parenchyma cells. Ancestral state reconstruction provides strong statistical support for a xylem feeding auchenorrhynchan ancestor bearing the dual symbiosis with the primary symbiont Sulcia (Bacteroidetes) and companion symbiont ‘β-Sym’ (β-proteobacteria). We identified seven dietary transitions from xylem feeding (six to phloem feeding, one to parenchyma feeding), but no reversions to xylem feeding; five evolutionary losses of Sulcia , including replacements by yeast symbionts, exclusively in phloem/parenchyma-feeding lineages; and 14–15 losses of β-Sym, including nine transitions to a different bacterial companion symbiont. Our analysis indicates that, although companion symbiont switching is not associated with shifts in host diet, Sulcia is probably required for xylem-feeding. Furthermore, the ancestral auchenorrhynchan bearing Sulcia and β-Sym probably represents the sole evolutionary origin of xylem feeding in the animal kingdom.

Funder

Royal Society

Division of Integrative Organismal Systems

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3