The costs of a big brain: extreme encephalization results in higher energetic demand and reduced hypoxia tolerance in weakly electric African fishes

Author:

Sukhum Kimberley V.ORCID,Freiler Megan K.,Wang Robert,Carlson Bruce A.ORCID

Abstract

A large brain can offer several cognitive advantages. However, brain tissue has an especially high metabolic rate. Thus, evolving an enlarged brain requires either a decrease in other energetic requirements, or an increase in overall energy consumption. Previous studies have found conflicting evidence for these hypotheses, leaving the metabolic costs and constraints in the evolution of increased encephalization unclear. Mormyrid electric fishes have extreme encephalization comparable to that of primates. Here, we show that brain size varies widely among mormyrid species, and that there is little evidence for a trade-off with organ size, but instead a correlation between brain size and resting oxygen consumption rate. Additionally, we show that increased brain size correlates with decreased hypoxia tolerance. Our data thus provide a non-mammalian example of extreme encephalization that is accommodated by an increase in overall energy consumption. Previous studies have found energetic trade-offs with variation in brain size in taxa that have not experienced extreme encephalization comparable with that of primates and mormyrids. Therefore, we suggest that energetic trade-offs can only explain the evolution of moderate increases in brain size, and that the energetic requirements of extreme encephalization may necessitate increased overall energy investment.

Funder

Division of Integrative Organismal Systems

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3