Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6

Author:

Lesser Michael P.1,Carleton Karen L.2,Böttger Stefanie A.1,Barry Thomas M.1,Walker Charles W.1

Affiliation:

1. Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA

2. Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA

Abstract

All echinoderms have unique hydraulic structures called tube feet, known for their roles in light sensitivity, respiration, chemoreception and locomotion. In the green sea urchin, the most distal portion of these tube feet contain five ossicles arranged as a light collector with its concave surface facing towards the ambient light. These ossicles are perforated and lined with pigment cells that express a PAX6 protein that is universally involved in the development of eyes and sensory organs in other bilaterians. Polymerase chain reaction (PCR)-based sequencing and real time quantitative PCR (qPCR) also demonstrate the presence and differential expression of a rhabdomeric-like opsin within these tube feet. Morphologically, nerves that could serve to transmit information to the test innervate the tube feet, and the differential expression of opsin transcripts in the tube feet is inversely, and significantly, related to the amount of light that tube feet are exposed to depending on their location on the test. The expression of these genes, the differential expression of opsin based on light exposure and the unique morphological features at the distal portion of the tube foot strongly support the hypothesis that in addition to previously identified functional roles of tube feet they are also photosensory organs that detect and respond to changes in the underwater light field.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3