The strategic reference gene: an organismal theory of inclusive fitness

Author:

Fromhage Lutz1ORCID,Jennions Michael D.2ORCID

Affiliation:

1. Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland

2. Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia

Abstract

How to define and use the concept of inclusive fitness is a contentious topic in evolutionary theory. Inclusive fitness can be used to calculate selection on a focal gene , but it is also applied to whole organisms . Individuals are then predicted to appear designed as if to maximize their inclusive fitness, provided that certain conditions are met (formally when interactions between individuals are ‘additive’). Here we argue that applying the concept of inclusive fitness to organisms is justified under far broader conditions than previously shown, but only if it is appropriately defined. Specifically, we propose that organisms should maximize the sum of their offspring ( including any accrued due to the behaviour/phenotype of relatives), plus any effects on their relatives' offspring production, weighted by relatedness. By contrast, most theoreticians have argued that a focal individual's inclusive fitness should exclude any offspring accrued due to the behaviour of relatives. Our approach is based on the notion that long-term evolution follows the genome's ‘majority interest’ of building coherent bodies that are efficient ‘vehicles’ for gene propagation. A gene favoured by selection that reduces the propagation of unlinked genes at other loci (e.g. meiotic segregation distorters that lower sperm production) is eventually neutralized by counter-selection throughout the rest of the genome. Most phenotypes will therefore appear as if designed to maximize the propagation of any given gene in a focal individual and its relatives.

Funder

Suomen Akatemia

Australian Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3