Expression of the neuropeptide SALMFamide-1 during regeneration of the seastar radial nerve cord following arm autotomy

Author:

Byrne Maria12ORCID,Mazzone Franca1,Elphick Maurice R.3ORCID,Thorndyke Michael C.4,Cisternas Paula1

Affiliation:

1. School of Medical Science, University of Sydney, Sydney, New South Wales 2006, Australia

2. School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia

3. School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK

4. Department of Biological and Environmental Sciences–Kristineberg, University of Gothenburg, Kristineberg 566, SE-45178 Fiskebäckskil, Sweden

Abstract

Arm loss through a separation at a specialized autotomy plane in echinoderms is inextricably linked to regeneration, but the link between these phenomena is poorly explored. We investigated nervous system regeneration post-autotomy in the asteriid seastar Coscinasterias muricata , focusing on the reorganization of the radial nerve cord (RNC) into the ectoneural neuroepithelium and neuropile, and the hyponeural region, using antibodies to the seastar-specific neuropeptide SALMFamide-1 (S1). Parallel changes in the associated haemal and coelomic vessels were also examined. A new arm bud appeared in 3–5 days with regeneration over three weeks. At the nerve stump and in the RNC immediately behind, the haemal sinus/hyponeural coelomic compartments enlarged into a hypertrophied space filled with migratory cells that appear to be involved in wound healing and regeneration. The haemal and coelomic compartments provided a conduit for these cells to gain rapid access to the regeneration site. An increase in the number of glia-like cells indicates the importance of these cells in regeneration. Proximal to the autotomy plane, the original RNC exhibited Wallerian-type degeneration, as seen in disorganized axons and enlarged S1-positive varicosities. The imperative to regrow lost arms quickly is reflected in the efficiency of regeneration from the autotomy plane facilitated by the rapid appearance of progenitor-like migratory cells. In parallel to its specialization for defensive arm detachment, the autotomy plane appears to be adapted to promote regeneration. This highlights the importance of examining autotomy-induced regeneration in seastars as a model system to study nervous system regeneration in deuterostomes and the mechanisms involved with the massive migration of stem-like cells to facilitate rapid recovery.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference46 articles.

1. Regeneration in echinoderms: repair, regrowth, cloning;Carnevali MDC;Invert. Surv. J.,2006

2. Larval cloning in the crown-of-thorns sea star, a keystone coral predator

3. Regeneration in Asterias vulgaris;King HD;Arch. Entw. Mech. Org.,1898

4. Mechanisms of arm-tip regeneration in the sea star, Leptasterias hexactis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3