Elevational differences in developmental plasticity determine phenological responses of grasshoppers to recent climate warming

Author:

Buckley Lauren B.1,Nufio César R.23,Kirk Evan M.4,Kingsolver Joel G.4

Affiliation:

1. Department of Biology, University of Washington, Seattle, WA 98195-1800, USA

2. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA

3. University of Colorado Natural History Museum, University of Colorado, Boulder, CO 80309, USA

4. Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA

Abstract

Annual species may increase reproduction by increasing adult body size through extended development, but risk being unable to complete development in seasonally limited environments. Synthetic reviews indicate that most, but not all, species have responded to recent climate warming by advancing the seasonal timing of adult emergence or reproduction. Here, we show that 50 years of climate change have delayed development in high-elevation, season-limited grasshopper populations, but advanced development in populations at lower elevations. Developmental delays are most pronounced for early-season species, which might benefit most from delaying development when released from seasonal time constraints. Rearing experiments confirm that population, elevation and temperature interact to determine development time. Population differences in developmental plasticity may account for variability in phenological shifts among adults. An integrated consideration of the full life cycle that considers local adaptation and plasticity may be essential for understanding and predicting responses to climate change.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3