A living fossil tale of Pangaean biogeography

Author:

Murienne Jerome12,Daniels Savel R.13,Buckley Thomas R.456,Mayer Georg7,Giribet Gonzalo1

Affiliation:

1. Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA

2. CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Évolution et Diversité Biologique), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France

3. Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

4. Landcare Research, Auckland Mail Centre, Private Bag 92170, Auckland 1142, New Zealand

5. School of Biological Sciences, University of Auckland, Auckland, New Zealand

6. Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand

7. Animal Evolution and Development, Institute of Biology, University of Leipzig, Talstraße 33, Leipzig 04103, Germany

Abstract

The current distributions of widespread groups of terrestrial animals and plants are supposedly the result of a mixture of either vicariance owing to continental split or more recent trans-oceanic dispersal. For organisms exhibiting a vicariant biogeographic pattern—achieving their current distribution by riding on the plates of former supercontinents—this view is largely inspired by the belief that Pangaea lacked geographical or ecological barriers, or that extinctions and dispersal would have erased any biogeographic signal since the early Mesozoic. We here present a time-calibrated molecular phylogeny of Onychophora (velvet worms), an ancient and exclusively terrestrial panarthropod group distributed throughout former Pangaean landmasses. Our data not only demonstrate that trans-oceanic dispersal does not need be invoked to explain contemporary distributions, but also reveal that the early diversification of the group pre-dates the break-up of Pangaea, maintaining regionalization even in landmasses that have remained contiguous throughout the history of the group. These results corroborate a growing body of evidence from palaeontology, palaeogeography and palaeoclimatic modelling depicting ancient biogeographic regionalization over the continuous landmass of Pangaea.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3