Globally invasive genotypes of the amphibian chytrid outcompete an enzootic lineage in coinfections

Author:

Jenkinson Thomas S.1ORCID,Rodriguez David2,Clemons Rebecca A.1,Michelotti Lucas A.1,Zamudio Kelly R.3,Toledo L. Felipe4ORCID,Longcore Joyce E.5,James Timothy Y.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA

2. Department of Biology, Texas State University, San Marcos, TX 78666, USA

3. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA

4. Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP 13083-862, Brazil

5. School of Biology and Ecology, University of Maine, Orono, ME 04469, USA

Abstract

Competition between genotypes is likely to be a key driver of pathogen evolution, particularly following a geographical invasion by distant strains. Theory predicts that competition between disease strains will result in the most virulent strain persisting. Despite its evolutionary implications, the role of strain competition in shaping populations remains untested for most pathogens. We experimentally investigated the in vivo competitive differences between two divergent lineages of the amphibian-killing chytrid fungus ( Batrachochytrium dendrobatidis , Bd ). These Bd lineages are hypothesized to have diverged in allopatry but been recently brought back into secondary contact by human introduction. Prior studies indicate that a panzootically-distributed, global lineage of Bd was recently introduced into southern Brazil, and is competitively excluding enzootic lineages in the southern Atlantic Forest. To test for differences in competitive ability between invasive and enzootic Brazilian Bd isolates, we coinfected a model host frog system which we developed for this study ( Hymenochirus curtipes ). We tracked isolate-specific zoospore production over the course of the coinfection experiment with chip-based digital PCR (dPCR). The globally invasive panzootic lineage had a competitive advantage in spore production especially during the first one to four weeks of infection, and on frogs that eventually succumbed to Bd infection. Our study provides new evidence that competitive pressure resulting from the human movement of pathogen strains can rapidly alter the genetics, community dynamics and spatial epidemiology of pathogens in the wild.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Texas State University

Division of Environmental Biology

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3