Octopamine and occupancy: an aminergic mechanism for intruder–resident aggression in crickets

Author:

Rillich Jan1,Schildberger Klaus2,Stevenson Paul A.2

Affiliation:

1. Institut für Neurobiologie, Freie Universität Berlin, Königin-Luise-Str. 28-30, D-14195 Berlin, Germany

2. Institut für Biologie, Universität Leipzig, Talstr. 33, D-04103 Leipzig, Germany

Abstract

Aggression is a behavioural strategy for securing resources (food, mates and territory) and its expression is strongly influenced by their presence and value. While it is known that resource holders are generally highly aggressive towards intruding consexuals and usually defeat them, the underlying neuronal mechanisms are not known. In a novel intruder–resident paradigm for field crickets (Gryllus bimaculatus), we show that otherwise submissive losers of a preceding aggressive encounter readily fight and often defeat aggressive winners after occupying an artificial shelter. This aggression enhancing effect first became evident after 2 min residency, and was maximal after 15 min, but absent 15 min after shelter removal. The residency effect was abolished following non-selective depletion of biogenic amines from the central nervous system using reserpine, or semi-selective depletion of octopamine and dopamine using α-methyl-tyrosine, but not following serotonin depletion using α-methyl-tryptophan. The residency effect was also abolished by the treatment with phentolamine, an α-adrenergic receptor antagonist, or epinastine, a highly selective octopamine receptor blocker, but not by propranolol, a ß-adrenergic receptor antagonist, or by yohimbine, an insect tyramine receptor blocker. We conclude that crickets evaluate residency as a rewarding experience that promotes aggressive motivation via a mechanism involving octopamine, the invertebrate analogue of noradrenaline.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3