From phenotype to genotype: a Bayesian solution

Author:

Denwood M. J.1,Mather A. E.1,Haydon D. T.1,Matthews L.1,Mellor D. J.1,Reid S. W. J.1

Affiliation:

1. Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK

Abstract

The study of biological systems commonly depends on inferring the state of a ‘hidden’ variable, such as an underlying genotype, from that of an ‘observed’ variable, such as an expressed phenotype. However, this cannot be achieved using traditional quantitative methods when more than one genetic mechanism exists for a single observable phenotype. Using a novel latent class Bayesian model, it is possible to infer the prevalence of different genetic elements in a population given a sample of phenotypes. As an exemplar, data comprising phenotypic resistance to six antimicrobials obtained from passive surveillance of Salmonella Typhimurium DT104 are analysed to infer the prevalence of individual resistance genes, as well as the prevalence of a genomic island known as SGI1 and its variants. Three competing models are fitted to the data and distinguished between using posterior predictive p -values to assess their ability to predict the observed number of unique phenotypes. The results suggest that several SGI1 variants circulate in a few fixed forms through the population from which our data were derived. The methods presented could be applied to other types of phenotypic data, and represent a useful and generic mechanism of inferring the genetic population structure of organisms.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference36 articles.

1. Bayesian measures of model complexity and fit

2. Deviance information criteria for missing data models

3. Bayes factors and choice criteria for linear models;Smith A. F. M.;J. R. Stat. Soc. Ser. B Methodol.,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3