Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergence

Author:

Lavoué Sébastien12,Miya Masaki3,Arnegard Matthew E.4,McIntyre Peter B.5,Mamonekene Victor6,Nishida Mutsumi2

Affiliation:

1. Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK

2. Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan

3. Department of Zoology, Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba 260-8682, Japan

4. Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA

5. Center for Limnology, University of Wisconsin, Madison, WI 53706, USA

6. Institut de Développement Rural, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo

Abstract

The relationship between genotypic and phenotypic divergence over evolutionary time varies widely, and cases of rapid phenotypic differentiation despite genetic similarity have attracted much attention. Here, we report an extreme case of the reverse pattern—morphological stasis in a tropical fish despite massive genetic divergence. We studied the enigmatic African freshwater butterfly fish ( Pantodon buchholzi ), whose distinctive morphology earns it recognition as a monotypic family. We sequenced the mitochondrial genome of Pantodon from the Congo basin and nine other osteoglossomorph taxa for comparison with previous mitogenomic profiles of Pantodon from the Niger basin and other related taxa. Pantodon populations form a monophyletic group, yet their mitochondrial coding sequences differ by 15.2 per cent between the Niger and Congo basins. The mitogenomic divergence time between these populations is estimated to be greater than 50 Myr, and deep genetic divergence was confirmed by nuclear sequence data. Among six sister-group comparisons of osteoglossomorphs, Pantodon exhibits the slowest rate of morphological divergence despite a level of genetic differentiation comparable to both species-rich (e.g. Mormyridae) and species-poor (e.g. Osteoglossidae) families. Morphological stasis in these two allopatric lineages of Pantodon offers a living vertebrate model for investigating phenotypic stability over millions of generations in the face of profound fluctuations in environmental conditions.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3