Origin and macroevolution of micro-moths on sunken Hawaiian Islands

Author:

Johns Chris A.12ORCID,Toussaint Emmanuel F. A.1ORCID,Breinholt Jesse W.3,Kawahara Akito Y.12ORCID

Affiliation:

1. Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA

2. Department of Biology, University of Florida, Gainesville, FL 32611, USA

3. RAPiD Genomics, 747 SW 2nd Avenue IMB#14, Gainesville, FL 32601, USA

Abstract

The origins and evolution of Hawaiian biodiversity are a matter of controversy, and the mechanisms of lineage diversification for many organisms on this remote archipelago remain unclear. Here we focus on the poorly known endemic leaf-mining moth genus Philodoria (Lepidoptera, Gracillariidae), whose species feed on a diversity of Hawaiian plant lineages, many of which are critically endangered. We use anchored hybrid enrichment to assemble the first phylogenomic dataset (507 loci) for any Hawaiian animal taxon. To uncover the timing and pattern of diversification of these moths, we apply two frequently used dating calibration strategies, biogeographic calibrations and secondary calibrations. Island calibrations on their own resulted in much younger and unrealistic dates compared to strategies that relied on secondary calibrations. Philodoria probably originated on the now partially sunken islands of Laysan or Lisianski, approximately 21 Ma, and were associated with host plants in the families Ebenaceae, Malvaceae or Primulaceae. Major feeding groups associated with specific host-plant families originated soon after the plants colonized the islands. Allopatric isolation and host shifts, in concert and independently, probably play major roles in the diversification of Philodoria . Our dating results indicate that Philodoria is among the oldest known Hawaiian arthropod lineages, and that island calibrations alone can lead to unrealistically young dates.

Funder

Division of Environmental Biology

National Geographic Society

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3