Masking of an auditory behaviour reveals how male mosquitoes use distortion to detect females

Author:

Simões P. M. V.1ORCID,Ingham R.1,Gibson G.2,Russell I. J.1

Affiliation:

1. School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK

2. Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK

Abstract

The mating behaviour of many mosquito species is mediated essentially by sound: males follow and mate with a female mid-flight by detecting and tracking the whine of her flight-tones. The stereotypical rapid frequency modulation (RFM) male behaviour, initiated in response to the detection of the female's flight-tones, has provided a means of investigating these auditory mechanisms while males are free-flying. Mosquitoes hear with their antennae, which vibrate to near-field acoustic excitation. The antennae generate nonlinear vibrations (distortion products, DPs) at frequencies that are equal to the difference between the two simultaneously presented tones, e.g. the male and female flight-tones, which are detected by mechanoreceptors in the auditory Johnston's organ (JO) at the base of the antenna. Recent studies indicated the male mosquito's JO is tuned not to the female flight-tone, but to the frequency difference between the male and female flight-tones. To test the hypothesis that mosquitoes detect this frequency difference, Culex quinquefasciatus males were presented simultaneously with a female flight-tone and a masking tone, which should suppress the male's RFM response to sound. The free-flight behavioural and in vivo electrophysiological experiments revealed that acoustic masking suppresses the RFM response to the female's flight-tones by attenuating the DPs generated in the nonlinear vibration of the antennae. These findings provide direct evidence in support of the hypothesis that male mosquitoes detect females when both are in flight through difference tones generated in the vibrations of their antennae owing to the interaction between their own flight-tones and those of a female.

Funder

Leverhulme Trust

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3