Plasticity of thermal tolerance and its relationship with growth rate in juvenile mussels ( Mytilus californianus )

Author:

Gleason Lani U.12ORCID,Strand Emma L.1,Hizon Brian J.1,Dowd W. Wesley13ORCID

Affiliation:

1. Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA

2. Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA

3. School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA

Abstract

Complex life cycles characterized by uncertainty at transitions between larval/juvenile and adult environments could favour irreversible physiological plasticity at such transitions. To assess whether thermal tolerance of intertidal mussels ( Mytilus californianus ) adjusts to post-settlement environmental conditions, we collected juveniles from their thermally buffered microhabitat from high- and low-shore locations at cool (wave-exposed) and warm (wave-protected) sites. Juveniles were transplanted to unsheltered cages at the two low sites or placed in a common garden. Juveniles transplanted to the warm site for one month in summer had higher thermal tolerance, regardless of origin site. By contrast, common-garden juveniles from all sites had lower tolerance indistinguishable from exposed site transplants. After six months in the field plus a common garden period, there was a trend for higher thermal tolerance at the protected site, while reduced thermal tolerance at both sites indicated seasonal acclimatization. Thermal tolerance and growth rate were inversely related after one but not six months; protected-site transplants were more tolerant but grew more slowly. In contrast to juveniles, adults from low-shore exposed and protected sites retained differences in thermal tolerance after common garden treatment in summer. Both irreversible and reversible forms of plasticity must be considered in organismal responses to changing environments.

Funder

Loyola Marymount University Seaver College of Science and Engineering

Division of Integrative Organismal Systems

Journal of Experimental Biology

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3