Skill not athleticism predicts individual variation in match performance of soccer players

Author:

Wilson Robbie S.1ORCID,David Gwendolyn K.1,Murphy Sean C.2,Angilletta Michael J.3,Niehaus Amanda C.1,Hunter Andrew H.1,Smith Michelle D.4

Affiliation:

1. School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia

2. School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia

3. School of Life Sciences, Arizona State University, Tempe, AZ, USA

4. School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia

Abstract

Just as evolutionary biologists endeavour to link phenotypes to fitness, sport scientists try to identify traits that determine athlete success. Both disciplines would benefit from collaboration, and to illustrate this, we used an analytical approach common to evolutionary biology to isolate the phenotypes that promote success in soccer, a complex activity of humans played in nearly every modern society. Using path analysis, we quantified the relationships among morphology, balance, skill, athleticism and performance of soccer players. We focused on performance in two complex motor activities: a simple game of soccer tennis (1 on 1), and a standard soccer match (11 on 11). In both contests, players with greater skill and balance were more likely to perform better. However, maximal athletic ability was not associated with success in a game. A social network analysis revealed that skill also predicted movement. The relationships between phenotypes and success during individual and team sports have potential implications for how selection acts on these phenotypes, in humans and other species, and thus should ultimately interest evolutionary biologists. Hence, we propose a field of evolutionary sports science that lies at the nexus of evolutionary biology and sports science. This would allow biologists to take advantage of the staggering quantity of data on performance in sporting events to answer evolutionary questions that are more difficult to answer for other species. In return, sports scientists could benefit from the theoretical framework developed to study natural selection in non-human species.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3