Morphological and biomechanical disparity of crocodile-line archosaurs following the end-Triassic extinction

Author:

Stubbs Thomas L.1,Pierce Stephanie E.2,Rayfield Emily J.1,Anderson Philip S. L.13

Affiliation:

1. School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK

2. Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK

3. Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA

Abstract

Mesozoic crurotarsans exhibited diverse morphologies and feeding modes, representing considerable ecological diversity, yet macroevolutionary patterns remain unexplored. Here, we use a unique combination of morphological and biomechanical disparity metrics to quantify the ecological diversity and trophic radiations of Mesozoic crurotarsans, using the mandible as a morpho-functional proxy. We recover three major trends. First, the diverse assemblage of Late Triassic crurotarsans was morphologically and biomechanically disparate, implying high levels of ecological variation; but, following the end-Triassic extinction, disparity declined. Second, the Jurassic radiation of marine thalattosuchians resulted in very low morphological disparity but moderate variation in jaw biomechanics, highlighting a hydrodynamic constraint on mandibular form. Third, during the Cretaceous terrestrial radiations of neosuchians and notosuchians, mandibular morphological variation increased considerably. By the Late Cretaceous, crocodylomorphs evolved a range of morphologies equalling Late Triassic crurotarsans. By contrast, biomechanical disparity in the Cretaceous did not increase, essentially decoupling from morphology. This enigmatic result could be attributed to biomechanical evolution in other anatomical regions (e.g. cranium, dentition or postcranium), possibly releasing the mandible from selective pressures. Overall, our analyses reveal a complex relationship between morphological and biomechanical disparity in Mesozoic crurotarsans that culminated in specialized feeding ecologies and associated lifestyles.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3