Cool echidnas survive the fire

Author:

Nowack Julia12,Cooper Christine Elizabeth23,Geiser Fritz1

Affiliation:

1. Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia

2. Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6845, Australia

3. School of Animal Biology M092, University of Western Australia, Crawley 6009, Western Australia, Australia

Abstract

Fires have occurred throughout history, including those associated with the meteoroid impact at the Cretaceous–Palaeogene (K–Pg) boundary that eliminated many vertebrate species. To evaluate the recent hypothesis that the survival of the K–Pg fires by ancestral mammals was dependent on their ability to use energy-conserving torpor, we studied body temperature fluctuations and activity of an egg-laying mammal, the echidna ( Tachyglossus aculeatus ), often considered to be a ‘living fossil’, before, during and after a prescribed burn. All but one study animal survived the fire in the prescribed burn area and echidnas remained inactive during the day(s) following the fire and substantially reduced body temperature during bouts of torpor. For weeks after the fire, all individuals remained in their original territories and compensated for changes in their habitat with a decrease in mean body temperature and activity. Our data suggest that heterothermy enables mammals to outlast the conditions during and after a fire by reducing energy expenditure, permitting periods of extended inactivity. Therefore, torpor facilitates survival in a fire-scorched landscape and consequently may have been of functional significance for mammalian survival at the K–Pg boundary.

Funder

UWA-UQ

University of New England

A.F.W. Schimper Stiftung

Curtin University of Technology

German Academic Exchange Service

Australian Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3