Male–female relatedness at specific SNP-linkage groups influences cryptic female choice in Chinook salmon ( Oncorhynchus tshawytscha )

Author:

Geßner Cornelia1ORCID,Johnson Sheri L.12ORCID,Fisher Paul3,Clarke Shannon3,Rutherford Kim1,Symonds Jane4,Gemmell Neil J.1

Affiliation:

1. Allan Wilson Centre, Department of Anatomy, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand

2. Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand

3. AgResearch, Invermay Agricultural Centre, Puddle Alley, Mosgiel 9053, New Zealand

4. National Institute of Water and Atmospheric Research, Bream Bay Aquaculture Park, Station Road, Ruakaka 0116, New Zealand

Abstract

In a range of taxa, the relatedness between mates influences both pre- and post-mating processes of sexual selection. However, relatively little is known about the genetic loci facilitating such a bias, with the exception of the major histocompatibility complex. Here, we performed tightly controlled replicated in vitro fertilization trials to explore the impact of relatedness on two possible mechanisms of cryptic female choice (CFC) in Chinook salmon ( Oncorhynchus tshawytscha ). We tested (i) whether relatedness of mates, assessed using 682 single nucleotide polymorphisms (SNPs) on 29 SNP-linkage groups (LGs), biases a male's sperm velocity in ovarian fluid (a parameter previously shown to predict male fertilization success), and (ii) whether relatedness of mates governs fertilization success via other mechanisms, probably via sperm–egg interactions. We found that relatedness on three LGs explained the variation in sperm velocity, and relatedness on two LGs explained fertilization success, which might indicate the presence of genes important in sperm–ovarian fluid and sperm–egg interactions in these genomic regions. Mapping of the SNPs on these LGs to the rainbow trout genome revealed two genes that affect fertility in humans and represent candidate genes for further studies. Our results thereby provide a novel contribution to the understanding of the mechanism of CFC.

Funder

University of Otago Doctoral Scholarship

Royal Society of New Zealand Marsden Grant

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3