Daphniid zooplankton assemblage shifts in response to eutrophication and metal contamination during the Anthropocene

Author:

Rogalski Mary Alta12ORCID,Leavitt Peter R.3,Skelly David K.1

Affiliation:

1. School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA

2. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA

3. Limnology Laboratory, Department of Biology, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

Abstract

Human activities during the Anthropocene result in habitat degradation that has been associated with biodiversity loss and taxonomic homogenization of ecological communities. Here we estimated effects of eutrophication and heavy metal contamination, separately and in combination, in explaining zooplankton species composition during the past 125–145 years using analysis of daphniid diapausing egg banks from four lakes in the northeastern USA. We then examined how these community shifts influenced patterns of diversity and homogenization. Analysis of past lake production (via subfossil pigments) and metal contamination (via sedimentary metals) demonstrated that eutrophication alone (19–39%) and in combination with metal pollution (17–54%) explained 36–79% of historical variation in daphniid species relative abundances in heavily fertilized lakes. In contrast, metal pollution alone explained the majority (72%) of historical variation in daphniid assemblages at the oligotrophic site. Several species colonization events in eutrophying lakes resulted in increased species richness and gamma diversity through time. At the same time, daphniid assemblages in three eutrophied lakes became more similar to each other (homogenized), but this pattern was only seen when accounting for species presence/absence. We did not observe consistent patterns of divergence between the assemblages in the eutrophying lakes and the low-nutrient reference site. Given the pervasive nature of fertilization and metal pollution, and the sensitivity of cladocerans to these factors, we suggest that many inhabited lake districts may already exhibit similar patterns of daphniid assemblage shifts.

Funder

Fulbright Canada

Natural Sciences and Engineering Research Council of Canada

Sigma Xi

American Museum of Natural History

Yale Institute of Biospheric Studies

Canada Research Chairs

Canadian Foundation for Innovation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3