Affiliation:
1. VKR Centre for Ocean Life, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
2. Department Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Abstract
Diel vertical migration (DVM), the daily movement of organisms through oceanic water columns, is mainly driven by spatio-temporal variations in the light affecting the intensity of predator–prey interactions. Migration patterns of an organism are intrinsically linked to the distribution of its conspecifics, its prey and its predators, each with their own fitness-seeking imperatives. We present a mechanistic, trait-based model of DVM for the different components of a pelagic community. Specifically, we consider size, sensory mode and feeding mode as key traits, representing a community of copepods that prey on each other and are, in turn, preyed upon by fish. Using game-theoretic principles, we explore the optimal distribution of the main groups of a planktonic pelagic food web simultaneously. Within one single framework, our model reproduces a whole suite of observed patterns, such as size-dependent DVM patterns of copepods and reverse migrations. These patterns can only be reproduced when different trophic levels are considered at the same time. This study facilitates a quantitative understanding of the drivers of DVM, and is an important step towards mechanistically underpinned predictions of DVM patterns and biologically mediated carbon export.
Funder
Villum Fonden
Gordon and Betty Moore Foundation
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献