Cyclical environments drive variation in life-history strategies: a general theory of cyclical phenology

Author:

Park John S.1ORCID

Affiliation:

1. Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Culver Hall 402, Chicago, IL 60637, USA

Abstract

Cycles, such as seasons or tides, characterize many systems in nature. Overwhelming evidence shows that climate change-driven alterations to environmental cycles—such as longer seasons—are associated with phenological shifts around the world, suggesting a deep link between environmental cycles and life cycles. However, general mechanisms of life-history evolution in cyclical environments are still not well understood. Here, I build a demographic framework and ask how life-history strategies optimize fitness when the environment perturbs a structured population cyclically and how strategies should change as cyclicality changes. I show that cycle periodicity alters optimality predictions of classic life-history theory because repeated cycles have rippling selective consequences over time and generations. Notably, fitness landscapes that relate environmental cyclicality and life-history optimality vary dramatically depending on which trade-offs govern a given species. The model tuned with known life-history trade-offs in a marine intertidal copepod Tigriopus californicus successfully predicted the shape of life-history variation across natural populations spanning a gradient of tidal periodicities. This framework shows how environmental cycles can drive life-history variation—without complex assumptions of individual responses to cues such as temperature—thus expanding the range of life-history diversity explained by theory and providing a basis for adaptive phenology.

Funder

Federal Student Aid

University of Chicago

Division of Environmental Biology

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3