Land uplift creates important meadow habitat and a potential original niche for grassland species

Author:

Auffret Alistair G.123ORCID,Cousins Sara A. O.1

Affiliation:

1. Biogeography and Geomatics, Department of Physical Geography, Stockholm University, 10691 Stockholm, Sweden

2. Department of Biology, University of York, York YO10 5DD, UK

3. Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden

Abstract

Semi-natural grasslands have been severely affected by agricultural land-use change. However, the isostatic land adjustment following deglaciation in the Northern Hemisphere means that new land is continually being created in coastal areas. We modelled isostatic adjustment during the last 4000 years in a region of the Baltic coast to estimate the emergence of potential grassland habitat. We also compared the α and β diversity of existing managed and abandoned coastal meadows, and assessed their contribution to biodiversity at landscape scales. We estimated that half the 7866 km 2 of emerging land had the potential to become coastal meadow habitat, which is an order of magnitude larger than the total area of all valuable semi-natural grassland in the study region today. The small area of managed coastal habitat remaining was found to have a disproportionate influence on the richness of threatened species at landscape scales, but our results also show that continued management is essential for the maintenance of grassland biodiversity. Our combination of approaches identifies uplifted coastal meadows as an additional original niche for grassland plant species, while highlighting that low-intensity disturbance through grassland management is essential for the maintenance of diversity at multiple scales.

Funder

The strategic research program Ekoklim at Stockholm University

Svenska Forskningsrådet Formas

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3