Life-history characteristics influence physiological strategies to cope with hypoxia in Himalayan birds

Author:

Barve S.12ORCID,Dhondt A. A.1,Mathur V. B.2,Cheviron Z. A.3

Affiliation:

1. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA

2. Wildlife Institute of India, Chandrabani, Uttarakhand, India

3. Division of Biological Sciences, University of Montana, Missoula, MT, USA

Abstract

Hypobaric hypoxia at high elevation represents an important physiological stressor for montane organisms, but optimal physiological strategies to cope with hypoxia may vary among species with different life histories. Montane birds exhibit a range of migration patterns; elevational migrants breed at high elevations but winter at low elevations or migrate further south, while high-elevation residents inhabit the same elevation throughout the year. Optimal physiological strategies to cope with hypoxia might therefore differ between species that exhibit these two migratory patterns, because they differ in the amount time spent at high elevation. We examined physiological parameters associated with blood-oxygen transport (haemoglobin concentration and haematocrit, i.e. the proportion of red blood cells in blood) in nine species of elevational migrants and six species of high-elevation residents that were sampled along a 2200 m (1000–3200 m) elevational gradient. Haemoglobin concentration increased with elevation within species regardless of migratory strategy, but it was only significantly correlated with haematocrit in elevational migrants. Surprisingly, haemoglobin concentration was not correlated with haematocrit in high-elevation residents, and these species exhibited higher mean cellular haemoglobin concentration than elevational migrants. Thus, alternative physiological strategies to regulate haemoglobin concentration and blood O 2 carrying capacity appear to differ among birds with different annual elevational movement patterns.

Funder

Athena Fund of the Cornell Lab of Ornithology, Atkinson Centre Sustainable Biodiversity Fund, the Sigma Xi Grants-in-Aid for Research, the Cornell Lab of Ornithology Research Fellowship

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3