Phenotypic evolution shaped by current enzyme function in the bioluminescent courtship signals of sea fireflies

Author:

Hensley Nicholai M.1ORCID,Ellis Emily A.1,Gerrish Gretchen A.2ORCID,Torres Elizabeth3,Frawley John P.2,Oakley Todd H.1ORCID,Rivers Trevor J.4

Affiliation:

1. Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA

2. Department of Biology, University of Wisconsin, La Crosse, WI 54601, USA

3. Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA

4. Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66405, USA

Abstract

Mating behaviours are diverse and noteworthy, especially within species radiations where they may contribute to speciation. Studying how differences in mating behaviours arise between species can help us understand how diversity is generated at multiple biological levels. The bioluminescent courtship displays of cypridinid ostracods (or sea fireflies) are an excellent system for this because amazing variety evolves while using a conserved biochemical mechanism. We find that the evolution of one aspect in this behavioural phenotype—the duration of bioluminescent courtship pulses—is shaped by biochemical function. First, by measuring light production from induced bioluminescence in 38 species, we discovered differences between species in their biochemical reactions. Then, for 16 species for which biochemical, phylogenetic and behavioural data are all available, we used phylogenetic comparative models to show that differences in biochemical reaction are nonlinearly correlated with the duration of courtship pulses. This relationship indicates that changes to both enzyme (c-luciferase) function and usage have shaped the evolution of courtship displays, but that they differentially contribute to these phenotypic changes. This nonlinear dynamic may have consequences for the disparity of signalling phenotypes observed across species, and demonstrates how unappreciated diversity at the biochemical level can lead to inferences about behavioural evolution.

Funder

Sigma Xi

Division of Environmental Biology

Society for the Study of Evolution Rosemary Grant Research Award

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3