Spatial reciprocity in the evolution of cooperation

Author:

Su Qi12ORCID,Li Aming134ORCID,Wang Long1ORCID,Eugene Stanley H.2ORCID

Affiliation:

1. Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China

2. Center for Polymer Studies, Department of Physics, Boston University, Boston, MA 02115, USA

3. Department of Zoology, University of Oxford, Oxford OX1 3PS, UK

4. Chair of Systems Design, ETH Zürich, Weinbergstrasse 56/58, Zürich 8092, Switzerland

Abstract

Cooperation is key to the survival of all biological systems. The spatial structure of a system constrains who interacts with whom (interaction partner) and who acquires new traits from whom (role model). Understanding when and to what degree a spatial structure affects the evolution of cooperation is an important and challenging topic. Here, we provide an analytical formula to predict when natural selection favours cooperation where the effects of a spatial structure are described by a single parameter. We find that a spatial structure promotes cooperation (spatial reciprocity) when interaction partners overlap role models. When they do not, spatial structure inhibits cooperation even without cooperation dilemmas. Furthermore, a spatial structure in which individuals interact with their role models more often shows stronger reciprocity. Thus, imitating individuals with frequent interactions facilitates cooperation. Our findings are applicable to both pairwise and group interactions and show that strong social ties might hinder, while asymmetric spatial structures for interaction and trait dispersal could promote cooperation.

Funder

Human Frontier Science Program

National Natural Science Foundation of China

China Scholarship Council

Defense Threat Reduction Agency

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3