Can insect egg deposition ‘warn’ a plant of future feeding damage by herbivorous larvae?

Author:

Beyaert Ivo1,Köpke Diana12,Stiller Josefin1,Hammerbacher Almuth2,Yoneya Kinuyo1,Schmidt Axel2,Gershenzon Jonathan2,Hilker Monika1

Affiliation:

1. Institute of Biology, Freie Universität Berlin, Haderslebener Strasse 9, 12163 Berlin, Germany

2. Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany

Abstract

Plant anti-herbivore defence is inducible by both insect feeding and egg deposition. However, little is known about the ability of insect eggs to induce defences directed not against the eggs themselves, but against larvae that subsequently hatch from the eggs. We studied how oviposition (OP) by the sawflyDiprion pinionPinus sylvestrisfoliage affects the plant's defensive potential against sawfly larvae. Larvae that initiated their development onP. sylvestristwigs on which they hatched from eggs gained less weight and suffered higher mortality than those fed on egg-free twigs. The poor performance of these larvae also affected the next herbivore generation since fecundity of resulting females was lower than that of females which spent their larval development on egg-free pine. Transcript levels ofP. sylvestrissesquiterpene synthases (PsTPS1,PsTPS2) were increased byD. piniOP, reached their highest levels just before larval hatching, and decreased when larvae started to feed. However, concentrations of terpenoid and phenolic metabolites presumed to act as feeding deterrents or toxins for herbivores did not change significantly after OP and feeding. Nevertheless, our performance data suggest that insect egg deposition may act to ‘warn’ a plant of upcoming feeding damage by larvae.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3